PRODUCT LIST FOR LUBRICANTS

Natural Aspect of Chemistry

www.triest.com.tr

Visit us. www.triest.com.tr

3-S Mühendislik Müşavirlik San. ve Tic. A.Ş.

Turkey HQ: Cevizli Mah. Bagdat Cad. No: 538/2 Ofistanbul Plaza TR-34846 Malteoe - ISTANBUL T: +90 216 527 47 84 F: +90 216 527 47 88

Uganda Factory: Namanve Industrial Park KyaggweBlock 113 Plot 750-990 Store A9 Namanve Mukano, Uganda T: +256 705 774 171

www.3-s.com.tr info@3-s.com.tr

Turkey Factory: 1 OSB Istiklal Mah 3.Cad No.21 Bevkov / Düzce / Türkive T: +90 380 553 72 21 F: +90 380 553 72 20

Netherlands Office: 3-Angle Trading B.V. Tauro Beheer Teleportboulevard 110 1043 EJ Amsterdam / Netherlands T: +31 6 81 09 15 98 www.3-angletrading.nl info@3-angletrading.nl

3-S Group

Company Profile

3-S Mühendislik is a lubricant/oleochemical manufacturing company that was established back in 1993 in Turkey. At the very beginning, 3-S started production of Lubricants in cooperation with Quaker Houghton. In the course of time, this lubricant business has evolved into producing new generation oleochemicals (i.e. Esters) under the trademark TRIEST with its own proprietary know-how.

Now, 3-S supplies numerous types of Esters (Fatty Acid, Fatty Acid Complex, Trimellitate, Polyol, Phosphate, Oxo Alcohol etc.) for various industries (Lubricants, Cosmetics, Coatings, Inks, Textile Chemicals, etc.) through its four premises: Turkey Factory, Turkey HQ, Uganda Factory and Netherlands Office.

Sustainable, Eco-friendly, Tailor-Made

3-S achieves sustainable supply by using renewable, bio-based and environmentally friendly raw materials from globally-known suppliers.

Agile and highly capable R&D, Supply Chain and Production Teams facilitate continuous learning within the organization and thereby quick adoption of innovative technologies. This makes 3-S a valuable partner for tailor-made solutions.

Quality Driven Culture

3-S has a quality driven business culture, which always prioritize first time through performance. This approach has been excelled through its 30-year corporate life, partnership with global organizations such as Quaker Houghton, Savita Oil Technologies, Chem-Trend and a customer base comprising many Turkey Fortune 500 companies

NETHERLANDS

TURKEY

YOUR INTERNATIONAL BUSINESS PARTNER

UGANDA

	DESCRIPTION	CHEMICAL AND PHYSICAL PROPERTIES												MAIN APPLICATION								FEATURES AND BENEFITS
PRODUCT NAME		Colour Gardner	Viscosity (40°C) mm²/s	Viscosity (100°C) mm²/s	Viscosity Index	Density (kg/m³)	Acid Value (mg KOH/g)	Flash Point	Pour Point	Saponification Number (mg KOH/g)	lodine Value (gl ₂ /100g)	Saturated	Engine Oil	Metalworking Fluid	Grease	Gear Oil	Chain Oil	Compressor Oil	Turbine Oil	Hydraulic Fluid	Rolling Oil	
IEST MRS-0411	Methyl Oleate	≤2	3-5	1-1,9	-	870-890	≤ 0,5	≥170	≤ -18	190-210	100-130		•	•							•	Derived from vegetable oils. Excellent solvency properties. Readily biodegradable. Low toxicity.
IEST MCC-0111	Methyl Caprylate Caprate	≤ 7	1-3	-	-	870-890	≤ 0,5	≥80	≤ -30	310-340	<1	•	•	•							•	Bio-based. Low viscosity. Excellent solvency. Low toxicity.
IEST IPO-0511	Isopropyl Oleate	≤2	3-5	1-1,9	-	860-880	≤ 0,5	≥170	≤ -18	175-185	100-130		•	•	•						•	Base oil and additive. Hydrolytically stable. Medium oxidative stability. Good lubricity.
IEST ITS-1611	Isotridecyl Stearate	≤ 1	16-18	4-5	160	860-870	≤ 7	≥220	≤5	130-150	<2	•	•	•	•		•		•		•	Lubricity additive. Good metal adhesion properties.
JECT FLIO 0024	0.51 % 1.01				225	050 070	. 1	. 210	. 20	140 100	CO 75											
IEST EHO-0821 IEST EHP-0811	2-Ethylhexyl Oleate	≤ 5	7-9	2-3	235	850-870	≤ 7	≥210 ≥210	≤ -30	140-160	60-75				•					•		Base oil and additive. Biodegradable . Good lubrication and emulsion properties. Hydrolytically stable. Also low temperature plasticizer for PVC.
IEST EHS-0911	2-Ethylhexyl Palmitate 2-Ethylhexyl Stearate	≤ 0,5 ≤ 0,5	8-9 9-10	2-3	170	850-870 850-870	≤ 7 ≤ 1	≥210	≤-3 ≤5	150-170 140-160	<2	•										Base oil and additive. Biodegradable . Good lubrication and emulsion properties. Hydrolytically stable. Base oil and additive. Biodegradable. Good lubrication. Low volatility. Provides clean burn and reduces staining at rolling operations.
IEST EHC-0611	2-Ethylhexyl Cocoate	≤ 0,3 ≤ 2	5-6	1-1,9	-	840-870	≤1	≥175	≤ -30	180-200	<5	•			(a)					O	•	Base oil and additive. Biodegradable. Good lubrication and emulsion properties. Hydrolytically stable.
IEST EHL-0511	2-Ethylhexyl Laurate	≤ 0,5	5-6	1-1,9	-	850-880	≤ 7	≥180	≤ -30	180-200	<2	•		•	•						•	Base oil and additive. Biodegradable. Good lubrication and emulsion properties. Hydrolytically stable. Enhances product stability and performance.
IEST EHD-0911	2-Ethylhexyl Dimerate	≤ 10	85-100	12-14	140	900-930	≤ 0,5	≥285	≤ -35	135-155	85-105	•		•	•							Base oil and additive. Biodegradable. Good lubrication. High thermal and oxidative stability. Excellent blending and miscibility behavior.
IEST GMO-4011	Glyceryl Monooleate	≤ 4	60-66	8-10	120	930-950	≤3	≥230	≤ 10	170-190	60-85			•	•							Base oil and additive. Readily biodegradable. Very low toxicity. Good lubrication properties. Low volatiliy. Co-emulsifier for O-W and W-O emulsions.
IEST GTO-0411	Glyceryl Trioleate	≤ 6	37-43	7-9	195	910-930	≤ 6	≥290	≤ 0	185-205	80-95			•	•							
IEST GML-2111	Glyceryl Monolaurate	-	-	(-	-	≤ /	-	-	190-210	<2			•								Surfactant, co-emulsifier, viscosity stabilizer.
IEST PGMO-4021	PEG 400 Monooleate	≤ 10	40-45	8-9	185	1000-1050	≤3	≥260	≤5	85-100	30-50			•								
IEST PGDO-4021	PEG 400 Dioleate	≤ 10	37-43	8-10	235	900-1100	≤3	≥260	≤5	100-120	40-60			•								Nonionic surfactant. A good general purpose emulsifier. Readily biodegradable. Low toxicity.
IEST PGMS-4011	PEG 400 Monostearate	-	-	-	-	-	≤ 1	-	-	80-100	<2	•		•								Emulsifier. Lubricity additive. Readily biodegradable. Low toxicity.
IEST PGC-4011	PEG 400 Cocoate	≤3	33-38	6-8	145	1000-1050	≤2	≥260	≤8	80-100	<5	•		•								
IEST PGMO-6021	PEG 600 Monooleate	≤ 10	58-61	11-13	190	1000-1100	≤3	≥270	≤ 15	60-70	20-40			•								Nonionic surfactant. A good general purpose emulsifier. Readily biodegradable. Low toxicity.
IEST PGDO-6021	PEG 600 Dioleate	≤ 10	50-60	10-13	210	900-1050	≤3	≥260	≤ 15	90-110	40-60			•								
IEST SMO-1711	Sorbitan Monooleate	≤ 10	220-380	10_22	25	980-1000	- Q	≥240	< -10	145-160	70-85											
IEST SMS-1511	Sorbitan Monostearate	<u> </u>	-	-	-	-	< 8	-	<u> </u>	160-190	70-63 <5	•									•	Non-ionic emulsifier and lubrication additive. 100% bio-based. Oil soluble, water dispersible. Can be used both in O-W and W-O emulsions. Can
IEST SML-1711	Sorbitan Monolaurate	≤ 3	-	-	-	1000-1050	≤8	≥240	≤ 20	170-190	<2	•		•	•							be used as dispersing and wetting agent. SMO-1711 also has corrosion inhibitor properties.
IEST TMTO-0422	Trimethylolpropane Trioleate	≤ 8	42-50	9-10	190	910-930	≤ 7	≥300	≤ -50	180-220	70-85		•	•	•		•			•		Base oil and additive. Highly bio-based. Hydrolytically stable. Excellent lubricity. High VI. Low pour point. Good demulsification. Ideal for HFDU fluids.
IEST TMC-0411	Trimethylolpropane Cocoate	≤ 3	34-40	7-8	160	900-920	≤ 7	≥260	≤ -5	220-250	<10	•	0			•	•	•	•	•		Base oil and additive. Highly bio-based. Excellent lubricity. Low volatility. Excellent thermal and oxidative stability.
IEST TMCC-0211 IEST PEO-0611	Trimethylolpropane Caprylate Caprate Pentaerythritol Oleate	≤ 7	17-21	4-5	140	930-950	≤ 1	≥250	≤ -50	300-330	<2	•	•			•	•	•		•		Base oil and additive. Highly bio-based. Excellent thermal and oxidative stability. Excellent lubricity. Very good low-temperature performance.
IEST NGDO-0211	Neopentyl Glycol Dioleate	≤ 4	60-70 22-26	10-12	170	900-920 890-910	≤1 ≤3	≥300 ≥270	≤ -25	180-200 180-200	75-95 75-95				•							Base oil and additive. Highly bio-based. Hydrolytically stable. Excellent lubricity. High VI. Low volatility. Good low-temperature performance. Base oil and additive. Highly bio-based. Hydrolytically stable. Excellent lubricity. High VI. Low volatility. Good low-temperature performance.
IEST PECC-0311	Pentaerythritol Caprylate Caprate	≤ 3	27-33	5-7	140	950-970	≤ <i>1</i>	≥270	≤ -30 ≤ -10	380-410	73-93 <2	•		•		•	•			•		Base oil and additive. Highly bio-based. Hydrolytically stable. Excellent lubricity. Excellent thermal and oxidative stability.
IEST NGCC-0811	Neopentyl Glycol DiCaprylate Caprate		7-9	2-3	135	900-930	≤1	≥200	≤ -30	295-315	<2	•	•	•		•	•	•		•		Base oil and additive. Highly bio-based. Hydrolytically stable. Excellent lubricity.Low viscosity, excellent anti-wear features.
IEST TMTO-0612	Trimethylolpropane Trioleate	≤ 4	62-72	11-13	180	920-940	≤ 7	≥300	≤ -50	200-220	70-85		•	•	•			•		•		Base oil and additive. Highly bio-based. Hydrolytically stable. Excellent lubricity. High VI. Low pour point. Good demulsification. Ideal for HFDU fluids.
IEST TMTO-1511	Trimethylolpropane Trioleate	≤ 4	120-180	25-28	170	930-950	≤ 1	≥300	≤ -40	180-200	70-85		•	•	•					•		Base oil and additive. Biodegradable. Superior lubricity. High VI. Hydrolytically stable. Good oxidative stability.
IEST TMTO-1011 K	Trimethylolpropane Trioleate	≤ 4		120-130	220	975-995	≤ 7	≥280	≤ -35	280-320	70-85		•		•	•	_	•	•	O		High viscosity base oil and additive. Biodegradable. Superior lubricity. High VI. Hydrolytically stable. Good oxidative stability.
IEST TMCC-4011	Trimethylolpropane Caprylate Caprate	≤3		39-45	160	980-1080	≤ 1	≥270		390-430	<2	•	O			•	(•	•	•		High viscosity base oil and additive. Biodegradable. Excellent thermal-oxidative stability and lubricity. Very good high-low temperature performance.
IEST CTMO-2511 IEST CTMO-2511 K	Trimellitic Complex Ester Trimellitic Complex Ester	≤5 ≤6		30-34 200-240	170 170	960-980 970-990	≤ 7	≥300	≤ -35 ≤ -15	220-240 240-260	70-85 70-85					•		•	•			High viscosity base oil and additive. Biodegradable. Superior lubricity. High VI. Hydrolytically stable. Good oxidative stability.
IEST CMCT-0811	C8-10 Succinic Triglyceride	≤2	76-84	10-11	120	1000-1100	≤1 ≤2	≥300 ≥250		400-450	<2	•			•					•	•	Base oil and additive. Highly bio-based. Good lubricity. High oxidation stability. Aluminium lubrication. Food Grade. (NSF 3H)
	co to odecane riggicalae		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	70 77	120	1000 1100		====	= 33	100 150												
IEST TTM-0811	Trimellitate Ester	≤ 7	80-88	8-10	80	970-990	≤ 7	≥240	≤ -45	310-340	<2				•		•					
HEST TTM-1211	Trimellitate Ester	≤ 7		10-12	85	950-970	≤ 7		≤ -55	270-300	<2		•		•		•	•	•			Excellent thermal and oxidative stability. Excellent high temperature performance. Low volatility. Low deposit/sludge/varnish formation.
IEST TTM-3211	Trimellitate Ester	≤ 7	310-350	19-23	70	950-960	≤ 7	≥250	≤ -45	220-250	<2		•		•		•	©				
IEST DPHA-1211	Diester	≤ 7	11-13	2-3	110	910-930	≤ 7	≥190	≤ -70	250-270	<2											
HEST DTDA-2611	Diester	≤ 1 ≤ 1	26-28	2-3 4,5-5,5	110	910-930	≤ <i>1</i>	≥190	≤ -70 ≤ -55	200-230	<2	0	•		••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••<l></l>	0		O				Excellent thermal and oxidative stability. Very good hydrolytic stability and best in class low temperature properties.
IEST DPHP-3911	Diester	≤ 1	36-40	4-6	40	950-970	≤ 7	≥220	≤ -55	240-260	<2		•		•	©		©	•			
IEST DTDP-9011	Diester	≤ 1	82-92	7-9	40	940-960	≤ 7	≥230	≤ -40	200-230	<2		•		•	•		©				Excellent thermal and oxidation stability. Good corrosion resistance. Excellent low-temperature properties. Low volatility.
IEST DOS-0111	Dioctyl Sebacate	≤ 7	11-13	3-4	145	900-920	≤ 7	≥210	≤ -60	260-280	0	•	•	•	•	•		•		•		Tin sheet lubricant. Anti-corrosion properties. Shows low temperature performance. Also can be used as Plasticizer.
IEST LXPH-0211	Lauryl Alcohol 2 eo Phosphate Ester	≤2	150-170	18-20	85	1000-1100	170-190	-	≤ 10	-	0											
IEST LXPH-0711	Lauryl Alcohol 7 eo Phosphate Ester	≤2	195-215	24-25	150	1000-1100	110-130	-		-	0									•		
IEST ITXPH-0511	Isotridecyl Alcohol 5 eo Phosphate Ester	≤2	200-210	25-26	150	1000-1100	110-130	-	≤ 0	-	0											Water soluble emulsifier, wetting agents and dispersants. EP/AW and corrosion inhibition additive for water based metal working fluids.
EST ITXPH-0811	Isotridecyl Alcohol 8 eo Phosphate Ester	≤2	240-260	31-32	160	1000-1100	110-130	-	≤ 0	-	0			•						•	•	
EST EHPH-2111	2-Ethylhexyl Phosphate Ester	≤ 5	200-260	18-22	100	1000-1100	430-500	-	≤ 0	-	0			•						•	•	
				10 11	00	020 050	≤3	>270	≤ -25	_	80-95											- W 111.
	TOFA Hydroxyethyl Imidazoline	≤8	145-165	12-14	80	930-950									0							Excellent sour corrosion inhibition performance for low salinity brines. Readily soluble in polar solvents and hydrocarbons.
IEST TIM-1011 IEST EHPH-1011 N IEST PLR-5011	TOFA Hydroxyethyl Imidazoline 2-Ethylhexyl Phosphate DMAPA Salt Polymerized Ricinoleic Acid	≤ 8 ≤ 10 ≤ 5	145-165 - 450-500	12-14 200-220 49-51	80 - 165	930-950 1000-1100 940-960	250 47-53	-	≤ -30 ≤ -35	- 200-230	0 80-95			•	•					•	•	Excellent sour corrosion inhibition performance for low salinity brines. Readily soluble in polar solvents and hydrocarbons. Water soluble emulsifier. Anti-wear and extreme pressure additive for water based metal working fluids. Corrosion inhibitor. Stabilizing agent in metalworking fluids. Shows oxidaditve biodegradability.